Aerodynamic Analysis of NACA 4412 Airfoil with CFD for Small Scale Wind Turbine Design
DOI:
https://doi.org/10.5281/zenodo.10325712Keywords:
airfoil, aerodynamic, CFDAbstract
With the increasing population in our country, the need for energy is increasing. Therefore, interest in renewable and clean energy matters in recent years. The wind turbine obtains electricity from wind energy, which is a renewable energy source. One of the elements affecting the yield of wind turbines is aerodynamic properties of airfoils. In this study, CFD analysis of NACA 4412 Airfoil which can be used in small scale wind turbine design was performed. Compared to literature, there were differences in the number of Reynolds due to the size difference of airfoil. Therefore, small deviations occurred in the aerodynamic properties of airfoil. Additionally, in this study, it was concluded that 15˚ angle of attack is the stall angle for NACA 4412 airfoil. It has been observed that as the angle of attack increases, the Reynolds number decreases and the drag coefficient value increases. In other words, it has been concluded that aerodynamic performance is negatively affected by increasing the drag coefficient value. As a result of the analyses, results consistent with the experimental studies were obtained.
References
E. Kaya, K. ve Koç, “Yatay Eksenli̇ Rüzgâr Türbi̇nleri̇nde Kanat Profil Tasarımı ve Üreti̇m Esasları,” Mühendis ve Makina, vol. 56, no. 670, pp. 38–48, 2015.
A. Yılmaz, İ., Çam, Ö., Taştan, M., Karcı, “Farklı Rüzgar Türbin Kanat Profillerinin Aerodinamik Performansının Deneysel İnce-lenmesi,” Politek. Derg., vol. 19, no. 4, pp. 577–584, 2016.
S. Güleren, K. M. ve Demir, “Rüzgar Türbi̇nleri İçi̇n Düşük Hücum Açılarında Farklı Kanat Profillerinin Performans Analizi,” Isı Bilim. ve Tek. Derg., vol. 31, no. 2, pp. 51–59, 2011.
M. O. L. Hansen, “Chapter 2 2-D Aerodynamics", Aerodyn. Wind turbine Second Ed. Earthscan, UK USA, 2008.
M. Bakırcı, “Yatay eksenli rüzgar türbinlerinde optimum uç hız oranının incelenmesi,” Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, 2018.
K. B. Navin, K. M. Paramasivam, M. Prasanna, and M. K. AZG, “Computational Fluid Dynamics Analysis of Aerodynamic Cha-racteristics of NACA 4412 vs S809 Airfoil for Wind Turbine Applications,” Int. J. Adv. Eng. Technol., vol. 7, pp. 168–173, 2016.
T. Kogaki, H. Matsumiya, K. Kieda, N. Yoshimizu, and Y. Yamamoto, “Performance Improvement Of Airfoils For Wind Turbines By The Modified Vortex Generator,” in 2004 European Wind Energy Conference, 2004.
H. Suzuki, K. Rinoie, and A. Tezuka, “Laminar airfoil modification attaining optimum drag reduction by use of airfoil morp-hing,” J. Aircr., vol. 47, no. 4, pp. 1126–1132, 2010.
D. Hartwanger and A. Horvat, “3D modelling of a wind turbine using CFD,” in NAFEMS Conference, United Kingdom, 2008.
Sarada, S., Shivashankar, M., & Rudresh, ” Numerical simulation of Viscous, incompressible flow around NACA 64618 subsonic airfoil using Computational Fluid Dynamics” Advances in Mechanical Engineering, 256, 2010.
Manga, P. J., Bello, A. A., Tijjani, M. A., Burari, F. W., AbdullAzeez, M. A., Teru, P. B., ... & Daniel, S. “Two-Dimensional Anal-yses Based Computational Fluid Dynamics On Naca 4412 Airfoil,” Nigerian Journal of Sustainable Research, 1(1), 1-9, 2023.
Aminjan, K. K., Ghodrat, M., Heidari, M., Rahmanivahid, P., Khanachah, S. N., Chitt, M., & Escobedo-Diaz, J. P. “Numerical and experimental investigation to design a novel morphing airfoil for performance optimization,” Propulsion and Power Re-search, 12(1), 83-103, 2023.
F. Bertagnolio, N. Sørensen, J. Johansen, and P. Fuglsang, “Wind turbine airfoil catalogue,” Riso Natl. Lab. Roskilde, 2001.
A. E. Abbott, I.H. and Von Doenhoff, "Theory of wing sections, Including a summary of airfoil data," New York, USA: Dover Publications Inc. Copyright, 1959.
E. N. Prasad, S. Janakiram, T. Prabu, and S. Sivasubramaniam, “Design and Development of Horizontal Small Wind Turbine Blade for Low Wind Speeds,” Int. J. Eng. Sci. Adv. Technol., vol. 4, no. 1, pp. 75–84, 2014.
M. O. L. Hansen, “Aerodynamics of Wind Turbines,” Earthscan London, UK, 2008.
Anderson John D., "Fundementals of Aerodynamics," Third Edition. New York, USA: McGraw-Hill Book Company, 2001.
A. Yükselen, “Aerodinamik Ders Notları,” İstanbul Teknik Üniversitesi, İstanbul, 2013.
Anderson John D., "Introduction to Flight," McGraw –Hill, 2000.
H. Cao, “Aerodynamics analysis of small horizontal axis wind turbine blades by using 2D and 3D CFD modelling,” University of Central Lancashire, England, 2011.
L. N. Sezer, U. N., Guptab, A. and Longa, “Lecture Notes in Computational Science and Engineering,” p. 67:457, 2009.
S. Sorensen, N. N., Michelsen, J. A. and Schreck, “Navier-Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft x 120 ft wind tunnel,” Wind Energy an Int. J. Prog. Appl. Wind Power Convers. Technol., vol. 5, no. 2–3, pp. 151–169, 2002.
E. Çengel, Y., Cimbala, Y. J. and Tahsin, "Akışkanlar Mekaniği Temelleri ve Uygulamaları," İzmir: Güven Kitapevi, 2008.
J. Anderson, John D. and Wendt, “Computational fluid dynamics,” Springer, vol. 206, 1995.
M. Bakırcı, “Rüzgar Türbin Kanat Profil Optimizasyonu,” Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Kırıkkale, 2014.
T. E. Bazilevs, Y., Hsu, M. C., Akkerman, I., Wright, S., Takizawa, K., Henicke, B., Spielman, T. and Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics,” Int. J. Numer. methods fluids, vol. 65, no. 1–3, pp. 207–235, 2011.
D. A. Spera, “Wind turbine technology,” Am. Soc. Mech. Eng. New York, USA, 1994.
Cornell University, “FLUENT Learning Modules,” 2020.
R. D. Mahawadiwar, H. V., Dhopte, V.D., Thakare, P.S. and Ashedkar, “CFD analysis of wind turbine blade,” Int. J. Eng. Res. Appl., pp. 3188–3194, 2012.
Hossain, S., Raiyan, M. F., Akanda, M. N. U., & Jony, N. H “A comparative flow analysis of NACA 6409 and NACA 4412 aerofoil,” International Journal of Research in Engineering and Technology, 3(10), 342-350, 2014.
Yilmaz, M., Köten, H., Çetinkaya, E., & Coşar, Z. “A comparative CFD analysis of NACA0012 and NACA4412 airfoils,” Journal of Energy Systems, 2(4), 145-159, 2018.
Qu, Q., Jia, X., Wang, W., Liu, P., & Agarwal, R. K. “Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect,” Aerospace Science and Technology, 38, 56-63, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Green Technology and Environment
This work is licensed under a Creative Commons Attribution 4.0 International License.