Effect of Oak Wood Modification on FTIR Crystallinity Indexes





wood modification, crystallinity index, propionic anhydride, succinic anhydride, oak wood


Chemical modification of wood is one of the preservation methods that have been used for a long time to protect wooden materials against pests such as fungi and insects and to extend their service life. During the chemical modification of wood, there is a change in the structure of the wood due to the effects of chemicals and temperature. The cellulose molecule, which constitutes approximately half of wood or lignocellulosic materials, consists of an amorphous and crystalline structure. The crystal structure of cellulose varies depending on the type of plant it is obtained from, the age of the tree and the type of wood. In this study, oak wood was subjected to chemical modification with propionic anhydride and succinic anhydride in order to determine the effect of wood modification on FTIR crystallinity indexes. With propionic anhydride and succinic anhydride, the weight gains of wood were calculated as 4.47% and 38.08%, respectively. Crystallinity indexes were calculated by FTIR spectroscopy before and after the chemical modification of the wood. After the chemical modification process, changes in FTIR crystallinity indexes were observed. According to the FTIR crystallinity index results, the total crystallinity indexes increased.


Teacă, C. A. ‘‘Crystalline structure of cellulose in wood after chemical modification using cyclic acid anhydrides (Maleic and Succinic)’’, BioResources, vol. 18, no. 2, pp. 2535-2550, May. 2023, doi: 10.15376/biores.18.2.2535-2550

Bodîrlau, R., Teaca, C. A., Resmerita, A. M., Spiridon, I. Cellulose Chem. Technol., 46 (5-6), 381, 2012.

Rowell, R. M. ‘‘Chemical modification of wood: A short review’’, Wood material science and engineering, vol. 1 no.1, pp.29-33, Aug. 2006, doi: 10.1080/17480270600670923

Rowell, R. M. “Chemical modification of wood’’, Carl Hanser Verlag GmbH & Co. KG, 2nd Ed., R. M. Rowell (ed.), CRC Press, Boca Raton, FL, USA, Sep. 2012, doi: 10.1201/b12487

Rowell, R. M., Dickerson, J. P. ‘‘Acetylation of wood’’, In deterioration and protection of sustainable biomaterials, American Chemical Society, vol. 1158, pp. 301-327, Jun. 2014, doi: 10.1021/bk-2014-1158.ch018

Fakirov, S., Bhattacharyya, D. ‘‘Handbook of Engineering Biopolymers Homopolymers, Blends, and Composites’’, Carl Hanser Verlag GmbH & Co. KG, 2007

Cavalli, A., Cibecchini, D., Togni,M. Sousa, H. S. ‘‘A review on the mechanical properties of aged wood and salvaged timber’’, Constr. Build. Mater, vol. 114, pp. 681–687, Jul. 2016, doi: 10.1016/j.conbuildmat.2016.04.001

Fengel, D. ‘‘Aging and fossilization of wood and its components’’, Wood Sci. Technol, vol. 25, no. 3, pp. 153–177, Mar. 1991, doi: 10.1007/BF00223468

Peng, Q., Ormondroyd, G., Spear, M., Chang, W. S. ‘‘The effect of the changes in chemical composition due to thermal treat-ment on the mechanical properties of Pinus densiflora’’, Construction and Building Materials, vol. 358, no. 129303, pp. 113-464, Dec. 2022, doi: 10.1016/j.conbuildmat.2022.129303

Lionetto, F., Del Sole, R., Cannoletta, D. Vasapollo, G., Maffezzoli, A. ‘‘Monitoring wood degradation during weathering by cel-lulose crystallinity’’, Materials, vol. 5, no. 10, pp. 1910-1922, Oct. 2012, doi: 10.3390/ma5101910

Hill, C. A. S., Jones, D. ‘‘Dimensional changes in corsican pine sapwood due to chemical modification with linear chain an-hy-drides,’’ Holzforschung, v. 53, pp. 267-271, Jun. 2005, doi: 10.1515/HF.1999.045

Åkerholm, M., Hinterstoisser, B., Salmén, L. ‘‘Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy’’, Carbohydrate research, vol. 339, no. 3, pp. 569-578, Feb. 2004, doi: 10.1016/j.carres.2003.11.012

Hassan, M. L., Rowell, R. M., Fadl, N. A., Yacoub, S. F., Christainsen, A. W. ‘‘Thermoplasticization of bagasse. I. Preparation and characterization of esterified bagasse fibers’’, Journal of applied polymer science, vol. 76, no. 4, pp.561-574, Mar. 2000, doi: 10.1002/(SICI)1097-4628(20000425)76:4<561::AID-APP14>3.0.CO;2-J

Tuong, V. M., Li, J. ‘‘Effect of heat treatment on the change in color’’, BioResources, vol. 5, no. 2, pp. 1257-1267, May. 2010

Müller, G., Schopper, C., Vos, H., Kharazipour, A., Polle, A. ‘‘FTIR-ATR spectroscopic analyses of changes in wood properties during particle-and fibreboard production of hard-and softwood trees’’, BioResources, vol. 4, no. 1, pp. 49–71, Feb. 2009

Higgins, H., Stewart, C., Harrington, K. ‘‘Infrared spectra of cellulose and related polysaccharides’’, J. polymer science, vol. 51, no. 155, pp. 59–84, May. 1961, doi: 10.1002/pol.1961.1205115505

Harrington, K., Higgins, H., Michell, A. ‘‘Infrared spectra of Eucalyptus regnans F. Muell. and Pinus radiata D. Don’’, Holzforschung, vol. 18, no.4, pp. 108–113, Nov. 1964, doi: 10.1515/hfsg.1964.18.4.108

Faix, O. ‘‘Classification of lignins from different botanical origins by FT-IR spectroscopy’’, Holzforschung, vol. 45, pp.21-27, Jul. 1991, doi: 10.1515/hfsg.1991.45.s1.21

Evans, P., Michell, A., Schmalzl, K. ‘‘Studies of the degradation and protection of wood surfaces’’, Wood Sci. Technol. vol. 26, no. 2, pp. 151-163, Jan. 1992, doi: 10.1007/BF00194471

Kotilainen, R. A., Toivanen, T. J., Alen, R. J. ‘‘FTIR monitoring of chemical changes in softwood during heating’’, J. Wood Chem. Technol., vol. 20, no:3, pp.307-320, Apr. 2000, doi: 10.1080/02773810009349638

Marchessault, R. ‘‘Application of infra-red spectroscopy to cellulose and wood polysaccharides’’, Pure Appl. Chem. vol. 5, no.1–2, pp.107-130, Jan. 1962, doi: 10.1351/pac196205010107

Chow, S. Z. ‘‘Infrared spectral characteristics and surface inactivation of wood at high temperatures’’, Wood Sci. Technol. vol. 5, no. 1, pp. 27-39, Mar. 1971, doi: 10.1007/BF00363118

Teacă, C. A., Bodîrlău, R., Spiridon, I. ‘‘Maleic anhydride treatment of softwood effect on wood structure and properties’’, Cellul Chem Technol, vol. 48, no. 9-10, pp. 863-868, Sep. 2014

Nelson, M. L., O'Connor, R. T. ‘‘Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spec-tra of lattice types I, II, III and of amorphous cellulose’’ Journal of applied polymer science, vol. 8 no.3, pp.1311-1324, May. 1964, doi: 10.1002/app.1964.070080322

O'Connor, R. T., DuPré, E. F., Mitcham, D. ‘‘Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: part I: physical and crystalline modifications and oxidation’’, Textile Research Journal, vol. 28, no.5, pp. 382-392, May. 1958, doi: 10.1177/0040517558028005

Hurtubise, F. G., Krassig, H. “Classification of fine structural characteristics in cellulose by infared spectroscopy. Use of potas-si-um bromide pellet technique,” Anal. Chem, vol. 32, no. 2, pp. 177-181, Feb. 1960, doi: 10.1021/ac60158a010

Fackler, K., Stevanic, J. S., Ters, T., Hinterstoisser, B., Schwanninger, M., Salmén, L. ‘‘FTIR imaging microscopy to localize and characterize simultaneous and selective white-rot decay within spruce wood cells’’, Holzforschung, vol. 65, no.3, pp. 411-420, Feb. 2011, doi: 10.1515/hf.2011.048.




How to Cite

Narlıoğlu, N. (2023). Effect of Oak Wood Modification on FTIR Crystallinity Indexes. Journal of Green Technology and Environment, 1(2), 7–12. https://doi.org/10.5281/zenodo.10207867



Research Articles