Biomass Carbonization, Briquetting and Briquette Characterization: A Review

Authors

  • Munashe Maposa Manicaland State University of Applied Sciences
  • Marko Chigondo Manicaland State University of Applied Sciences, Faculty of Engineering, Department of Chemical and Pro-cessing Engineering, Fern Hill Campus, Mutare/Zimbabwe https://orcid.org/0000-0003-2265-0621
  • Charles Rashama Manicaland State University of Applied Sciences, Faculty of Engineering, Department of Chemical and Pro-cessing Engineering, Fern Hill Campus, Mutare/Zimbabwe https://orcid.org/0000-0002-2149-755X
  • Delroy Nyadenga Manicaland State University of Applied Sciences, Faculty of Engineering, Department of Chemical and Pro-cessing Engineering, Fern Hill Campus, Mutare/Zimbabwe https://orcid.org/0009-0007-0054-930X
  • Tapiwa Nancy Madziwa Manicaland State University of Applied Sciences, Faculty of Engineering, Department of Chemical and Pro-cessing Engineering, Fern Hill Campus, Mutare/Zimbabwe https://orcid.org/0009-0008-7552-2766
  • Placxedes Sigauke University of South Africa, Christian de Wet and Pioneer Avenue, Private Bag X6, Florida, 1710, Johannesburg/ South Africa https://orcid.org/0000-0002-9290-4220
  • Charis Gratitude Research and Innovation, Midlands State University, Gweru/Zimbabwe https://orcid.org/0000-0001-5952-8748

DOI:

https://doi.org/10.5281/zenodo.15387682

Keywords:

Biomass, Binder, Briquettes, Carbonisation, Characterization

Abstract

Briquetting is a contemporary means of converting waste biomass into a high calorific value solid fuel through densification of biomass-binder mixture. The process of briquetting is carried out in different ways depending on the type of biomass, binder or desired properties of the briquettes, the economic value and heating efficiency of the biomass as a fuel. This review paper aims at demonstrating the research achievements attained so far in the use of various forms and sources of biomass, the different binders and binder formulations, biomass carbonization, briquetting techniques and the characterization methods used to study the qualities of briquets. The future of biomass recycling to solve world energy crisis is a topical issue. Conversion of biomass into fuel briquettes can be a sustainable endeavour if research directs its focus on availability and renewable nature of raw materials given the seasonal nature of some types of biomass and binders.

References

Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass conversion technologies. In Greenhouse gas ba-lances of bioenergy systems (pp. 107-139). Academic Press. https://doi.org/10.1016/B978-0-08-101036-5.00008-2.

Adeleke, A. A., Odusote, J. K., Lasode, O. A., Ikubanni, P. P., Malathi, M., & Paswan, D. (2019). Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02160.

Aina, O. M., Adetogun, A., & Iyiola, K. A. (2009). Heat energy from value-added sawdust briquettes of albizia zygia. Ethiopian Jour-nal of Environmental Studies and Management, 2(1). https://doi.org/10.4314/ejesm.v2i1.43501.

Ajimotokan, H. A., Ehindero, A. O., Ajao, K. S., Adeleke, A. A., Ikubanni, P. P., & Shuaib-Babata, Y. L. (2019). Combustion characteris-tics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African, 6, e00202. https://doi.org/10.1016/j.sciaf.2019.e00202.

Akowuah, J. O., Kemausuor, F., & Mitchual, S. J. (2012). Physico-chemical characteristics and market potential of sawdust charcoal briquette. International Journal of Energy and Environmental Engineering, 3, 1-6. https://doi.org/10.1186/2251-6832-3-20.

Antal, M. J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial & engineering chemistry rese-arch, 42(8), 1619-1640. https://doi.org/10.1021/ie0207919.

Antal, M. J., Mochidzuki, K., & Paredes, L. S. (2003). Flash carbonization of biomass. Industrial & engineering chemistry research, 42(16), 3690-3699. https://doi.org/10.1021/ie0301839.

Anumol, T., Vijayanandan, A., Park, M., Philip, L., & Snyder, S. A. (2016). Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India. Environment international, 92, 33-42. https://doi.org/10.1016/j.envint.2016.03.022.

Aransiola, E. F., Oyewusi, T. F., Osunbitan, J. A., & Ogunjimi, L. A. O. (2019) Effect of binder type, binder concentration and com-pacting pressure on some physical properties of carbonised concorb briquette. Energy Reports 5:909–918.

Assis, M. R., Brancheriau, L., Napoli, A., & Trugilho, P. F. (2016). Factors affecting the mechanics of carbonized wood: literature review. Wood Science and Technology, 50, 519-536. https://doi.org/10.1007/s00226-016-0812-6.

Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press.

Borowski G, Stepniewski W, Wojcik-Oliveira K (2017) Effect of starch binder on charcoal briquette properties. Int Agrophy-sicsrophysics 31:571–574. https://doi.org/10.1515/intag-2016-0077.

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048.

Chen, X., Lin, Q., He, R., Zhao, X., & Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresource technology, 241, 236-243. https://doi.org/10.1016/j.biortech.2017.04.012.

Chen, X., Ma, X., Peng, X., Lin, Y., Wang, J., & Zheng, C. (2018). Effects of aqueous phase recirculation in hydrothermal carboniza-tion of sweet potato waste. Bioresource Technology, 267, 167-174. https://doi.org/10.1016/j.biortech.2018.07.032.

Chrzazvez, J., Théry-Parisot, I., Fiorucci, G., Terral, J. F., & Thibaut, B. (2014). Impact of post-depositional processes on charcoal fragmentation and archaeobotanical implications: experimental approach combining charcoal analysis and biomechanics. Jo-urnal of Archaeological Science, 44, 30-42. https://doi.org/10.1016/j.jas.2014.01.006.

de Oliveira Maia, B. G., de Oliveira, A. P., de Oliveira, T. M., Marangoni, C., Souza, O., & Sellin, N. (2018). Characterization and pro-duction of banana crop and rice processing waste briquettes. Environmental Progress & Sustainable Energy, 37(4), 1266-1273. https://doi.org/10.1002/ep.12798.

de Oliveira, J. B., Gomes, P. A., & de Almeida, M. R. (1982). Preliminary studies for normalization of charcoal quality control tests. Serie de Publicacoes Tecnicas-Fundacao Centro Tecnologico de Minas Gerais (Brazil), (6).

de Oliveira, R. S., Palácio, S. M., da Silva, E. A., Mariani, F. Q., & Reinehr, T. O. (2017). Briquettes production for use as power source for combustion using charcoal thin waste and sanitary sewage sludge. Environmental Science and Pollution Research, 24(11), 10778–10785. https://doi.org/10.1007/s11356-017-8695-0.

Deshannavar, U. B., Hedge, P. G., Dhalayat, Z., Patil, V., Gavas, S. (2018). Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application. Materials Science for Energy Technologies, 1(2), 175-181. https://doi.org/10.1016/j.mset.2018.07.003.

Dinesha, P., Kumar, S., & Rosen, M. A. (2018). Biomass Briquettes as an Alternative Fuel: A Comprehensive Review. Energy Techno-logy. http://dx.doi.org/10.1002/ente.201801011.

Emerhi, E. A. (2011). Physical and combustion properties of briquettes produced from sawdust of three hardwood species and dif-ferent organic binders. Advances in Applied Science Research, 2(6), 236-246.

Fang, J., Zhan, L., Ok, Y. S., & Gao, B. (2018). Minireview of potential applications of hydrochar derived from hydrothermal carboni-zation of biomass. Journal of Industrial and Engineering Chemistry, 57, 15-21. https://doi.org/10.1016/j.jiec.2017.08.026.

Feng, X., Wu, H., Grossman, J. M., Hanvivadhanakul, P., FitzGerald, J. D., Park, G. S., Dong, X., Chen, W., Kim, M. H., Weng, H. H., Furst, D. E., Gorn, A., McMahon, M., Taylor, M., Brahn, E., Hahn, B. H., and Tsao, B. P. (2006). The Physical, Proximate and Ul-timate Analysis of Rice Husk Briquettes Produced from a Vibratory Block Mould Briquetting Machine. Arthritis and Rheuma-tism, 54(9), 2951–2962.

Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 75, 603–608. https://doi.org/10.1016/j.enconman.2013.08.008.

Gallifuoco, A., Taglieri, L., Scimia, F., Papa, A. A., & Di Giacomo, G. (2017). Hydrothermal carbonization of Biomass: New experimen-tal procedures for improving the industrial Processes. Bioresource technology, 244, 160-165. https://doi.org/10.1016/j.biortech.2017.07.114.

Hasan, E. S., Jahiding, M., Mashuni, Ilmawati, W. O. S., Wati, W., & Sudiana, I. N. (2017). Proximate and the Calorific Value Analysis of Brown Coal for High-Calorie Hybrid Briquette Application. Journal of Physics: Conference Series, 846(1). https://doi.org/10.1088/1742-6596/846/1/012022.

Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbo-nization for biomass conversion. Journal of the Energy Institute, 92(6), 1779-1799. https://doi.org/10.1016/j.joei.2018.12.003.

Idah, P. A., & Mopah, E. J. (2013). Comparative assessment of energy values of briquettes from some agricultural by-products with different binders.

Jittabut, P. (2015). Physical and Thermal Properties of Briquette Fuels from Rice Straw and Sugarcane Leaves by Mixing Molasses. Energy Procedia 79,2 – 9. https://doi.org/10.1016/j.egypro.2015.11.452.

Kaliyan, N., & Morey, R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresource Technology, 101(3), 1082–1090. https://doi.org/10.1016/j.biortech.2009.08.064.

Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical proper-ties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. https://doi.org/10.1016/j.rser.2015.01.050.

Kambo, H. S., Minaret, J., & Dutta, A. (2018). Process water from the hydrothermal carbonization of biomass: a waste or a valuable product? Waste and Biomass Valorization, 9, 1181-1189. https://doi.org/10.1007/s12649-017-9914-0.

Kapelyushin, Y. E. (2023). Comparative review on the technologies of briquetting, sintering, pelletizing and direct use of fines in processing of ore and technogenic materials. Preparation of Raw Materials, CIS Iron and Steel Review, 26, 4–11. doi:10.17580/cisisr.2023.02.01.

Kaur, A., Kumar, A., Singh, P., & Kundu, K. (2017). Production, Analysis and Optimization of Low Cost Briquettes from Biomass Re-sidues. Advances in Research, 12(4), 1–10. https://doi.org/10.9734/air/2017/37630.

Klar, M. (1925). The technology of wood distillation: with special reference to the methods of obtaining the intermediate and finis-hed products from the primary distillate. Chapman & Hall.

Kpalo, S. Y., Zainuddin, M. F., Manaf, L. A., & Roslan, A. M. (2020). A Review of Technical and Economic Aspects of Biomass Briqu-etting. Sustainability, 12(4609). doi:10.3390/su12114609.

Kruse, A., & Dahmen, N. (2018). Hydrothermal biomass conversion: Quo vadis?. The Journal of Supercritical Fluids, 134, 114-123. https://doi.org/10.1016/j.supflu.2017.12.035.

Kumar, M., Oyedun, A. O., & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742-1770. https://doi.org/10.1016/j.rser.2017.05.270.

Lela, B., Barišić, M., & Nižetić, S. (2016). Cardboard/sawdust briquettes as biomass fuel: Physical–mechanical and thermal characte-ristics. Waste management, 47, 236-245. https://doi.org/10.1016/j.wasman.2015.10.035.

Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and environmental sa-fety, 150, 1-17. https://doi.org/10.1016/j.ecoenv.2017.12.026.

Liu, F., Dai, Y., Zhang, S., Li, J., Zhao, C., Wang, Y., ... & Sun, J. (2018). Modification and application of mesoporous carbon adsorbent for removal of endocrine disruptor bisphenol A in aqueous solutions. Journal of Materials Science, 53(4), 2337-2350. https://doi.org/10.1007/s10853-017-1705-2.

Liu, J., Jiang, X., Cai, H., & Gao, F. (2021). Study of Combustion Characteristics and Kinetics of Agriculture Briquette Using Ther-mogravimetric Analysis. ACS Omega, 6(24), 15827–15833. https://doi.org/10.1021/acsomega.1c01249.

Manyà, J. J., Laguarta, S., Ortigosa, M. A., & Manso, J. A. (2014). Biochar from slow pyrolysis of two-phase olive mill waste: effect of pressure and peak temperature on its potential stability. Energy & fuels, 28(5), 3271-3280. https://doi.org/10.1021/ef500654t.

Manyuchi, M. M., Mbohwa, C., & Muzenda, E. (2018) Value addition of coal fines and saw dust to briquettes usin molasses as a bin-der. South African J Chem Eng 26:70–73. https://doi.org/10.1016/j.sajce.2018.09.004.

Marreiro, H. M., Peruchi, R. S., Lopes, R. M., Andersen, S. L., Eliziário, S. A., & Rotella Junior, P. (2021). Empirical studies on biomass briquette production: A literature review. Energies, 14(8320), 1-40. https://doi.org/10.3390/en14248320.

Moutinho, V. H. P., & Tomazello Filho, M. (2013). Influência da variabilidade dimensional e da densidade da madeira de Eucalyptus sp. e Corymbia sp. na qualidade do carvão (Doctoral dissertation, Tese apresentada para título de doutor em ciências, prog-rama: recursos florestais. Piracicaba).

Nyakuma, B. B., Johari, A., Ahmad, A., & Abdullah, T. A. T. (2014). Thermogravimetric analysis of the fuel properties of empty fruit bunch briquettes. Jurnal Teknologi (Sciences and Engineering), 67(3), 79–82. https://doi.org/10.11113/jt.v67.2768.

Obi, O. F., Pecenka, R., & Clifford, M. J. (2022). A review of biomass briquette binders and quality parameters. Energies, 15(7),2426. https://doi.org/10.3390/en15072426.

Ofori, P. (2020). Production and characterisation of briquettes from carbonised cocoa pod husk and sawdust. Open Access Library Journal, 7(02), 1. https://doi.org/10.4236/oalib.1106029.

Oladeji, J. T. (2015). Theoretical Aspects of Biomass Briquetting: A Review Study. Journal of Energy Technologies and Policy, 5(3).

Olorunnisola, A. O. (2004). Briquetting of rattan furniture waste. https://doi.org/10.1163/156915904774195133.

Olugbade, T., Ojo, O., & Mohammed, T. (2019). Influence of binders on combustion properties of biomass briquettes: A recent re-view. BioEnergy Research, 12, 241-259. https://doi.org/10.1007/s12155-019-09973-w.

Oyelaran, O. A. (2015). Evaluating the Bio-Energy Potential of Groundnut Shell and Sugarcane Bagasse Waste Composite. KKU En-gineering Journal, 42(4), 306–310. https://doi.org/10.14456/kkuenj.2015.36.

Pallavi, H. V., Srikantaswamy, S., Kiran, B. M., Vyshnavi, D. R., & Ashwin, C. A. (2013). Briquetting Agricultural Waste as an Energy Source. Journal of Environmental Science, 2(1), 160–172. www.jecet.org.

Papin, A. V., Ignatova, A. Y., Nevedrov, A. V., & Cherkasova, T. G. (2015). Fuel briquetting using finely disperse waste of coal mining and processing. Journal of Mining Science, 51, 895-900. https://doi.org/10.1134/S1062739115050052.

Pellera, F. M., Regkouzas, P., Manolikaki, I., & Diamadopoulos, E. (2020, May). Biochar production from waste biomass: Characteri-zation and evaluation for potential applications. In EGU General Assembly Conference Abstracts, 9694. https://ui.adsabs.harvard.edu/link_gateway/2020EGUGA.22.9694P/doi:10.5194/egusphere-egu2020-9694.

Pepejal, B. (2014). Physico-chemical characterizations of sawdust-derived biochar as potential solid fuels. Malaysian Journal of Analytical Sciences, 18(3), 724-729.

Rahman, N. A., Anggorowati, D. A., Rastini, F. E. K., Mustiadi, L., & Ajiza, M. (2021). Characteristics of briquettes from bagasse char-coal using XRD and FTIR analysis. AIP Conference Proceedings, 2384(December). https://doi.org/10.1063/5.0071778.

Raju, C. A. I. R. (2014). Studies on Development of Fuel Briquettes for Household and Industrial Purpose. International Journal of Research in Engineering and Technology, 03(02), 54–63. https://doi.org/10.15623/ijret.2014.0302011.

Rejdak, M., Robak, J., Czardybon, A., Ignasiak, K., & Fudała, P. (2019). Research on the production of composite fuel on the basis of fine-grained coal fractions and biomass - The impact of process parameters and the type of binder on the quality of briquettes produced. Minerals, 10(1), 31.

Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Gcb Bioenergy, 5(2), 104-115. https://doi.org/10.1111/gcbb.12018.

Rotich, P. K. (1998). Carbonization and briquetting of sawdust for use in domestic cookers (Doctoral dissertation, University of Nairobi).

Rousset, P., Figueiredo, C., De Souza, M., & Quirino, W. (2011). Pressure effect on the quality of eucalyptus wood charcoal for the steel industry: A statistical analysis approach. Fuel processing technology, 92(10), 1890-1897. https://doi.org/10.1016/j.fuproc.2011.05.005.

Shiferaw, Y., Tedla, A., Melese, C., Mengistu, A., Debay, B., Selamawi, Y., Merene, E., & Awoi, N. (2017). Preparation and evaluation of clean briquettes from disposed wood wastes. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(20), 2015–2024. https://doi.org/10.1080/15567036.2017.1399175.

Sotannde, O. A., Oluyege, A. O., & Abah, G. B. (2010). Physical and combustion properties of briquettes from sawdust of Azadirach-ta indica. Journal of Forestry research, 21, 63-67. https://doi.org/10.1007/s11676-010-0010-6.

Stolarski, M. J., Szczukowski, S., Tworkowski, J., Krzyżaniak, M., Gulczyński, P., & Mleczek, M. (2013). Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renewable energy, 57, 20-26. https://doi.org/10.1016/j.renene.2013.01.005.

Sun, B., Yu, J., Tahmasebi, A., & Han, Y. (2014). An experimental study on binderless briquetting of Chinese lignite: Effects of briquet-ting conditions. Fuel Processing Technology, 124, 243–248. https://doi.org/10.1016/j.fuproc.2014.03.013.

Sunnu, A. K., Adu-Poku, K. A., & Ayetor, G. K. (2023). Production and Characterization of Charred Briquettes from Various Agricul-tural Waste. Combustion Science and Technology, 195(5), 1000–1021. https://doi.org/10.1080/00102202.2021.1977803.

Talukdar, A., Das, D., & Saikia, M. (2014). Study of Combustion Characteristics of Fuel Briquettes. International Journal of Computa-tional Engineering Research||Vol, 04, 1–3.

Taulbee, D., Patil, D. P., Honaker, R. Q., & Parekh, B. K. (2009) Briquetting of coal fines and sawdust part 1: Binder and briquet-ting-parameters evaluations. Int J Coal Prep Util 29:1–22. https://doi.org/10.1080/19392690802628705.

Tosun, Y. I. (2007). Clean fuel-magnesia bonded coal briquetting. Fuel Processing Technology, 88(10), 977-981. https://doi.org/10.1016/j.fuproc.2007.05.008.

Veeresh, S. J., & Narayana, J. (2012). Assessment of Agro-Industrial Wastes Proximate, Ultimate, SEM and FTIR analysis for Feasibility of Solid Bio-Fuel Production. Universal Journal of Environmental Research & Technology, 2(6), 575–581. http://www.environmentaljournal.org/2-6/ujert-2-6-13.pdf.

Venter, P., & Naude, N. (2015) Evaluation of some optimum moisture and binder conditions for coal fines briquetting. South African Inst Min Metall.

Yaman, S., SahanŞahan, M., Haykiri-Açma, H., Şeşen, K., & Küçükbayrak, S. (2001). Fuel briquettes from biomass–lignite blends. Fuel processing technology, 72(1), 1-8. https://doi.org/10.1016/S0378-3820(01)00170-9.

Zanella, K., Concentino, V. O., & Taranto, O. P. (2017) Influence of the type of mixture and concentration of different binders on mechanical properties of green charcoal briquettes. Chem Eng Trans 57:199–204. https://doi.org/10.3303/CET1757034.

Zhang, G., Sun, Y., & Xu, Y. (2018) Review of briquette binders and briquetting mechanism. Renew Sustain Energy Rev 477–487. https://doi.org/10.1016/j.rser.2017.09.072.

Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., ... & Wang, R. (2019a). Biochar for environmental management: Mitiga-ting greenhouse gas emissions, contaminant treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922. https://doi.org/10.1016/j.cej.2019.05.139.

Zhang, S., Zhu, X., Zhou, S., Shang, H., Luo, J., & Tsang, D. C. (2019). Hydrothermal carbonization for hydrochar production and its application. In Biochar from biomass and waste (pp. 275-294). Elsevier. https://doi.org/10.1016/B978-0-12-811729-3.00015.

Downloads

Published

30.06.2025

How to Cite

Maposa, M., Chigondo , M., Rashama , C., Nyadenga , D., Madziwa , T. N., Sigauke , P., & Gratitude , C. (2025). Biomass Carbonization, Briquetting and Briquette Characterization: A Review. Journal of Green Technology and Environment, 3(1), 30–44. https://doi.org/10.5281/zenodo.15387682

Issue

Section

Review Articles