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Abstract: Air pollution is a pressing global environmental challenge, with PM2.5 (particulate matter with a 

diameter of less than 2.5 micrometers) being recognized as one of the most hazardous pollutants to human health. 

Prolonged exposure to PM2.5 has been linked to respiratory diseases, cardiovascular conditions, and premature 

mortality. It has been shown that 99% of the world population is exposed daily to pollutant concentrations 

exceeding the World Health Organization’s recommended safe levels. This study compares PM2.5 levels measured 

by satellite data from the Atmospheric Composition Analysis Group at Washington University in St. Louis with 

ground-based measurements from the Sensor Community initiative using SDS011 sensors deployed in Mainz, 

Germany. In addition, we investigated whether Mainz has achieved a positive trend in reducing PM2.5 

concentrations and assessed how well the city complies with WHO standards. Our results indicate that: (a) satellite 

measurements consistently record higher PM2.5 values than ground-based sensors, (b) Mainz has experienced a 

decreasing trend in PM2.5 levels in recent years, although some of this reduction may be attributed to pandemic-

related lockdowns, and (c) pollution levels in Mainz remain significantly above WHO guideline limits. 
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Mainz Şehrinde Hava Kirliliği Tahmini ve Eğilimleri (2017–
2022): Bir Vaka Çalışması 

Öz: Hava kirliliği, PM2.5'in (çapı 2,5 mikrometreden küçük partikül madde) insan sağlığı için en tehlikeli kirleti-

cilerden biri olarak kabul edilmesiyle acil bir küresel çevre sorunudur. PM2.5'e uzun süre maruz kalmanın solunum 

yolu hastalıkları, kardiyovasküler rahatsızlıklar ve erken ölümle bağlantılı olduğu gösterilmiştir. Dünya nüfusunun 

%99'unun her gün Dünya Sağlık Örgütü'nün önerdiği güvenli seviyeleri aşan kirletici konsantrasyonlarına maruz 

kaldığı gösterilmiştir. Bu çalışma, St. Louis'deki Washington Üniversitesi'ndeki Atmosferik Kompozisyon Analiz 

Grubu'ndan alınan uydu verileriyle ölçülen PM2.5 seviyelerini, Almanya, Mainz'de konuşlandırılan SDS011 sensör-

lerini kullanan Sensör Topluluğu girişiminin yer tabanlı ölçümleriyle karşılaştırır. Ayrıca, Mainz'in PM2.5 konsant-

rasyonlarını azaltmada olumlu bir eğilim elde edip etmediğini araştırdık ve şehrin DSÖ standartlarına ne kadar 

uyduğunu değerlendirdik. Sonuçlarımız şunları göstermektedir: (a) uydu ölçümleri sürekli olarak yer tabanlı sen-

sörlerden daha yüksek PM2.5 değerleri kaydetmektedir, (b) Mainz'da son yıllarda PM2.5 seviyelerinde bir düşüş 

eğilimi görülmüştür, ancak bu düşüşün bir kısmı pandemiyle ilgili karantinalara bağlanabilir ve (c) Mainz'daki 

kirlilik seviyeleri DSÖ kılavuz limitlerinin önemli ölçüde üzerinde kalmaya devam etmektedir. 

Anahtar Kelimeler: PM2.5; hava kirliliği; uydu verileri; yer sensörleri; Mainz 
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1. Introduction 
Air pollution comprises a complex mixture of airborne substances that pose risks to 

environmental quality and human health. Among these, fine particulate matter (PM2.5) has 
gained special attention due to its capacity to penetrate deep into the respiratory tract, 
potentially causing a variety of adverse health outcomes including cardiovascular disease, 
respiratory disorders, and premature death. The World Health Organization (WHO) 
revised its air quality guidelines in 2021, setting the annual PM2.5 exposure limit at 5 µg/m³ 
due to growing evidence of its health impacts (WHO, 2021). 

While global efforts to monitor and mitigate PM2.5 levels have increased, localized 
assessments remain essential for designing effective policy interventions. The city of Mainz, 
situated in the federal state of Rheinland-Pfalz in Germany, presents a unique case due to 
its urban-industrial environment, its proximity to high-traffic areas, and the availability of 
both official and citizen-led monitoring networks. This study capitalizes on these resources 
to assess local pollution dynamics through the comparison of satellite- and ground-based 
PM2.5 data sources. 

Previous research has highlighted the benefits and drawbacks of both ground-based 
and satellite-based air quality monitoring. Ground sensors offer real-time, high-resolution 
data at specific locations but often suffer from limited spatial coverage and variability due 
to maintenance or calibration issues (Microcontrollers Lab, 2024). In contrast, satellite-
based monitoring provides broader spatial information, yet struggles to capture localized 
pollution fluctuations due to lower spatial resolution and atmospheric interference (Hsu et 
al., 2019; Wang et al., 2020). 

The central objectives of this study are to investigate the differences between these 
data sources in measuring PM2.5 levels in Mainz and to examine whether a significant trend 
in air quality improvement is evident over the observed time period. By applying robust 
statistical methods and spatial matching techniques, the study contributes to a more 
nuanced understanding of air quality monitoring and offers valuable insights for future 
environmental policy design.  

2. Theory 

2.1. Particulate Matter and Health 
Particulate matter, particularly PM2.5, refers to fine particles that are less than 2.5 

micrometers in diameter. These particles are significant due to their small size, which allows 
them to penetrate deep into the respiratory system and enter the bloodstream, causing 
severe health effects such as respiratory diseases, heart conditions, and even premature 
death (Mushtaq et al., 2019). PM2.5 originates primarily from combustion processes, 
including emissions from  vehicles, industrial facilities, power plants, and natural sources 
like wildfires and dust storms (Xue et al., 2019). Due to their health implications, PM2.5 levels 
are closely monitored globally (Brook et al, 2010; Mushtaq et al, 2024). The WHO (2021) 
sharpened their guidelines considerably in 2021 and has now established a maximum of 5 
µg/m³ as the threshold for damage to human health, based on widespread evidence of the 
link between exposure and adverse health outcomes. 

2.2. PM2.5 Sensing 
2.2.1. Ground-based sensors 

Ground-based sensors offer real-time measurements of air quality at localized points, 
providing detailed data on specific areas. Their reliance on fixed locations and potential 
calibration issues may introduce challenges in data accuracy. Despite these limitations, 
ground sensors contribute valuable information for urban air quality monitoring. Mushtaq 
(Mushtaq et al, 2024) discussed the comparison between satellite and ground-based 
measurements for PM2.5 and other pollutants, emphasizing the importance of evaluating 
the accuracy of each method in the context of their health implications, arguing that sensors 
could have a value for detecting local hotspots (Wang et al., 2020). An example of the lower 
grade SDS011 sensor is shown in Figure 1. 
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Figure 1. SDS011 PM2.5 Sensor. Source: Microcontrollers Lab (2024). 

2.2.2. Satellite observations 
Satellite-based measurements, like those provided by the Atmospheric Composition 

Analysis Group at Washington University in St. Louis (Shen et al., 2024), offer a broader, 
regional perspective on PM2.5 pollution levels. Satellites capture a vast array of data, 
providing a global overview of air quality trends and regional pollution patterns. The 
measurement method is based on air dispersion, and remote and displayed in (Figure 2). 

 
Figure 2. Remote Sensing. Copied with a CC-BY license from (Handschuh et al., 2023). 

However, the spatial resolution of satellite measurements is typically lower compared 
to higher grade ground sensors, which can result in less precise data when assessing small-
scale local pollution (Hsu et al, 2019). Additionally, satellite data may not capture transient 
pollution events or localized emissions (Wang et al, 2020). 

2.3. Geospatial Alignment 
To compare the effectiveness of satellite and sensor data, it is crucial to align both data 

sources spatially. Geospatial alignment ensures that satellite data points are compared to 
the nearest sensor locations, enabling meaningful comparisons. Additionally, temporal 
alignment is necessary, as satellite data may be available on a monthly or annual basis, while 
sensor data can provide more frequent, real-time readings. In this study, the KDTree 
method was employed to achieve precise spatial alignment between satellite and ground-
based measurements (Xue et al, 2019).  

KDTree is a spatial data structure used for organizing points in a k-dimensional space, 
allowing for fast nearest-neighbor searches (Bentley, 1975). This method is particularly use-
ful when handling large geospatial datasets, such as air pollution measurements, where pre-
cise location matching is required. The KDTree (K-dimensional tree) is a space-partitioning 
data structure that is widely utilized in various contexts, including nearest neighbor 
searches, range searches, and multi-dimensional data indexing. It organizes points in a k-
dimensional space efficiently by recursively dividing the space into two half-spaces, allow-
ing for faster queries than a naive linear search. 

A KDTree is constructed by recursively dividing the data points along one of the k 
dimensions. The basic algorithm for building a KDTree involves selecting a dimension (of-
ten cyclically) and a pivot point (typically the median of the chosen dimension). This pivot 
acts as the boundary between points that will reside in the left subtree and those that will 
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go into the right subtree The construction process can be summarized in the following 
steps: 
• Choose the dimension to split by, based on the depth of the node in the tree; 
• Sort the points based on the selected dimension; 
• Select the median point from the sorted list to minimize the number of comparisons 

in future searches. 
• Recursively apply the same process to the left and right subsets of points 

 
Figure 3. KDTree Algorithm Procedures. Copied with a CC-BY 4.0 License from (Anzola et al., 2018). 

This recursive approach results in a binary tree structure where each node represents 
a point in k-dimensional space, with the left child containing points less than the parent 
node in the selected dimension and the right child containing points greater than or equal 
to the parent (Bentley, 1975). Searching in a KDTree can be performed efficiently for nearest 
neighbors and range queries. For nearest neighbor searches, the algorithm starts at the root 
of the tree and traverses down to the leaves while maintaining a list of potential nearest 
neighbors. Upon reaching a leaf node, the distance to the point is calculated. The algorithm 
then backtracks and checks the other branches of the tree, utilizing a bounding box defined 
by the current nearest neighbor distance to prune unnecessary searches (Baspinar, 2020). 

The main advantage of using KDTree is its speed in performing multidimensional 
searches, commonly achieving average-case complexities of O(log n) for both nearest neigh-
bor queries and range queries. This efficiency makes it particularly well-suited for applica-
tions such as computer graphics, machine learning, and spatial databases (Shapiro, 2018). 
However, KDTree has several limitations. Its performance can degrade in high-dimensional 
spaces — commonly referred to as the "curse of dimensionality" — where the tree becomes 
less efficient, leading to average-case complexities approaching O(n) (Liu, 2018). In addi-
tion, the construction of the KDTree itself can be time-consuming for very large datasets 
due to the need to sort points at each split. 

KDTree finds extensive application in various domains, including computer vision, ro-
botics, and geographic information systems. In computer vision, KDTree is often employed 
to accelerate image retrieval processes through efficient image feature indexing (Szeliski, 
2010). In robotics, it aids in motion planning and obstacle avoidance by enabling fast spatial 
queries in dynamic environments (Kuffner & LaValle, 2000). 

3. Methods 

3.1. Data Sources 
Satellite observations provide estimates of the PM2.5 distribution across large geo-

graphical regions. The “Atmospheric Composition Analysis Group at Washington Univer-
sity in St. Louis (WUSTL, 2025)” generates high-resolution data (x 0.0 from a combination 
of satellites, ground-based monitors and deep learning appraches as shown in Figure 4. 
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Figure 4. Washington University St. Louis ACAG System (WUSTL, 2025). 

 
3.1.1. Sensor community 

Ground-based PM2.5 measurements were obtained using SDS011 sensors deployed by 
volunteers in Mainz, Germany, as part of the citizen science initiative sensor.community 
(sensor.community, 2025). These sensors provide real-time measurements of PM2.5 and 
PM10 concentrations, uploaded to the public web site daily. 

 
3.1.2. Official city data 

The state (bundesland) Rheinland-Pfalz provides public access to particulate matter 
via their central emission net infrastructure. Rheinland-Pfalz State Environmental Agency's 
PM2.5 data (ZIMEN; 2023). The city uses sensors of the type shown in Figure 8. 

 

4. Results 

4.1. Geographical Alignment 
The proximities of studied sensor and satellite points are seen in Figure 5 and Table 1. 

 
Figure 5. Locations of satellite and sensor points by the KDTree algorithm. 
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Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Longitude Nearest Satellite Point (lat, lon) Distance (km) 
8.240 (49.975, 8.245) 0.38 
8.246 (50.005, 8.245) 0.13 
8.182 (49.985, 8.185) 0.40 
8.298 (49.975, 8.295) 0.40 
8.260 (50.005, 8.255) 0.66 
8.268 (49.955, 8.265) 0.37 
8.279 (49.965, 8.275) 0.27 
8.273 (49.985, 8.275) 0.31 
8.265 (50.005, 8.265) 0.15 
8.184 (49.995, 8.185) 0.13 

 
The observed distances had a mean of 0,32 km (standard deviation 0.2 km). All points 

are depicted on the overview map of Mainz in Figure 6. 

 
Figure 6. Locations of satellite and sensor points by the KDTree algorithm. 

4.2. PM2.5 Results by Measurement Source 
Two of the sensors were discarded due to unreliable results, and (Table 2) presents the 

recorded total average of all monthly measurements at the corresponding locations. 

Table 2. Total average of monthly measurements. 

Sensor ID Satellite Sensor Difference 
803 10.3 8.3 2.0 
10701 10.4 4.6 5.8 
21886 9.1 3.7 5.5 
23712 9.9 3.3 6.6 
26656 10.0 7.1 3.0 
47739 10.0 3.7 6.3 
48807 9.6 7.3 2.2 
772200 10.6 8.0 2.0 

 
The applied two sample Mann Whitney test revealed a mean difference of 4.16 mi-

crograms per cubic meter (Satellite: 9.91, Sensor 5.75) and a p value < 0.001. The discrepan-
cies between the satellite and sensor are further illustrated by the line graphs of the monthly 
averages of three randomly chosen points out of the eight locations in Table 3. 

 
 
 
 



Air Pollution Estimation and Trends in Mainz (2017–2022): A Case Study 24 of 29 
 

 
Gerandanesh, S. et al. GreenTech 2025, 3(1). https://doi.org/10.5281/zenodo.15441950. 24 of 29 

Table 3. Graphical comparison of satellite vs. sensor measurements. 

Sensor Graph 

803 
(Mainz-Kostheim,Wiesbaden) 

 

26656 
(Mainz-Kastel,Wiesbaden) 

 

23712 
(Mainz-Weisenau) 
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4.3. Comparison to City Official Sources 
The state (bundesland) Rheinland-Pfalz, where Mainz is located, provides public 

access to pollution data measured at a number of points as shown in Figure 7.However, only 
two of these stations ("Mainz Zitadelle" and "Mainz Parcusstraße") specifically measure 
PM2.5 concentrations. These stations are highlighted in red on the map (Figure 7). 

 
Figure 7. A map of the city sensor stations. 

 
At the two locations where PM2.5 is measured, the city has utilized a sensor of the type 

shown in Figure 8. 
 

 
Figure 8. Particulate monitor model SHARP5030 (Thermo Fisher Scientific Inc., 2018). 

We show the yearly average from all three measurement sources in (Table 4). 
 

Table 4. Yearly average PM2.5 (µg/m3). 

Year Satellite City Sensor 
2017 9.6 12.9 9.0 
2018 10.0 12.7 9.0 
2019 8.4 11.2 9.9 
2020 10.1 10.0 10.5 
2021 11.5 10.7 9.9 
2022 12.2 10.5 8.0 
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4.4. Pollution Trends 
A regression model was fitted for the yearly means of each of the satellite locations. 

This table shows the coefficients of the sensors in Mainz. The data used is the air pollution 
PM2.5 from the period 2017 to 2022 as measured by the satellite system. 

 
Figure 9. A regression analysis on air pollution PM2.5 between the period of 2017 and 2022. 

This figure illustrates the decline in PM2.5 air pollution in Mainz, based on the statistical 
analysis presented in Table 5. The trend exhibits an almost linear decrease in air pollution 
levels, with the exception of 2020. The significant drop in 2020 can likely be attributed to 
the impact of the COVID-19 pandemic. 

Table 5. Reducing air pollution PM2.5 between 2017 to 2022. 

Data Point (sensor.community ID) Slope / (microg/m3/year) P Value 
803 -0.511 0.107 
10701 -0.488 0.119 
21886 -0.440 0.0527 
23712 -0.489 0.130 
26656 -0.521 0.119 
47739 -0.487 0.113 
48807 -0.518 0.108 
66816 -0.470 0.155 

772200 -0.428 0.238 
834870 -0.474 0.107 

 

4.5. Levels Compared to WHO Safe Thresholds 
The histogram of the recorded yearly mean values from every satellite station (10 points 

over six years) is shown in Figure 10. 
 

 
Figure 10. Histogram of recorded PM2.5 measurements all satellite points. 



Air Pollution Estimation and Trends in Mainz (2017–2022): A Case Study 27 of 29 
 

 
Gerandanesh, S. et al. GreenTech 2025, 3(1). https://doi.org/10.5281/zenodo.15441950. 27 of 29 

It was noted that the range of the yearly average concentration was 8.1 - 12.7 g/m3 or 
that in other words all points had levels at least 60 % above what the WHO deems as safe. 
In the final year, only three out of ten stations even had a level below twice the WHO 
guidelines. 

 

5. Discussion 
The comparison between satellite-derived and ground-based PM2.5 measurements 

demonstrates a consistent pattern: satellite data typically reports higher concentrations 
than those recorded by ground-level sensors. This discrepancy, while statistically significant 
according to the Mann-Whitney U test, is not uniform across all time periods or 
measurement locations. Such variation implies that localized environmental conditions—
including microclimatic effects, traffic density, and land use—play an important role in 
modulating air quality and can affect the performance and readings of different 
measurement systems. One primary source of variation arises from methodological 
differences in data collection. Ground-based sensors, such as those used in the Sensor 
Community initiative, provide high-frequency, localized measurements. These sensors are 
highly sensitive to immediate pollution sources such as road traffic, construction sites, or 
nearby industrial activity. However, their readings can be affected by environmental 
variables like temperature and humidity, as well as inconsistencies in device calibration and 
maintenance. The relatively low cost and simplicity of these sensors—while valuable for 
citizen science—also limit their technical precision. 

In contrast, satellite-based measurements, such as those from the Atmospheric 
Composition Analysis Group, offer consistent regional coverage and incorporate 
sophisticated algorithms to estimate surface-level PM2.5 from aerosol optical depth. These 
measurements inherently smooth out short-term or hyper-local pollution events due to 
their larger spatial footprint. Consequently, while satellites may more accurately reflect 
regional air quality trends, they are less responsive to acute local variations. This 
fundamental difference in resolution and methodology is likely a major contributor to the 
observed disparities between the datasets.  Interestingly, comparisons with official data 
from the Rheinland-Pfalz State Environmental Agency revealed stronger alignment with 
satellite-derived values than with data from individual ground sensors. This may reflect the 
standardized maintenance and calibration of official stations, making them more 
compatible with the generalized estimates provided by satellite platforms. Some sensor 
locations exhibited strong correlation with satellite values, while others displayed weak or 
inconsistent relationships. These differences further support the hypothesis that 
environmental context, sensor placement, and maintenance quality significantly influence 
measurement agreement. 

The linear regression analysis conducted on annual PM2.5 averages across all 
measurement systems indicated a modest but clear downward trend in pollution levels, 
with an average annual reduction of approximately 0.5 µg/m³. These findings align with 
regional reports and suggest that local air quality has improved, potentially due to enhanced 
environmental regulations and the temporary decline in emissions during COVID-19 
lockdowns. It matches similar findings where a falling trend has been observed in Europe 
(Aas et al., 2024).  

Despite some positive trends, the persistent exceedance of WHO's recommended PM2.5 
limits across all data sources underscores a critical public health concern. The results 
suggest that current mitigation efforts are insufficient to achieve safe air quality levels in 
Mainz. In light of this, the implementation of stronger regulatory frameworks and long-
term urban planning strategies is imperative. It should have a very high sense of urgency 
given that exposure to PM2.5 has been estimated to cause as much as 3 % of all deaths in 
Germany (Hahad et al., 2024) Finally, the study emphasizes the value of hybrid monitoring 
approaches that integrate satellite data with ground-level sensor observations and 
meteorological inputs. Such models, as demonstrated in previous studies (Wang et al., 
2020), can substantially improve the spatial and temporal resolution of air quality estimates 
and provide a more accurate foundation for public health decision-making and 
environmental policy design. 
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6. Conclusions 
This study provides a comprehensive assessment of PM2.5 concentrations in Mainz 

from 2017 to 2022 by comparing satellite, citizen sensor, and official measurement systems. 
The findings show a general decline in PM2.5 levels over time, but all measurements continue 
to exceed WHO guidelines. Discrepancies between data sources highlight the strengths and 
limitations of each method and emphasize the need for hybrid approaches that integrate 
multiple data streams. Future research should focus on enhancing data harmonization and 
improving the resolution of both satellite and ground-based monitoring to better capture 
the complex spatial and temporal dynamics of urban air pollution. 
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